Nodes Browser

AIO_Preprocessor
AnimalPosePreprocessor
AnimeFace_SemSegPreprocessor
AnimeLineArtPreprocessor
AnyLineArtPreprocessor_aux
BAE-NormalMapPreprocessor
BinaryPreprocessor
CannyEdgePreprocessor
ColorPreprocessor
ControlNetAuxSimpleAddText
ControlNetPreprocessorSelector
DSINE-NormalMapPreprocessor
DWPreprocessor
DensePosePreprocessor
DepthAnythingPreprocessor
DepthAnythingV2Preprocessor
DiffusionEdge_Preprocessor
ExecuteAllControlNetPreprocessors
FacialPartColoringFromPoseKps
FakeScribblePreprocessor
HEDPreprocessor
HintImageEnchance
ImageGenResolutionFromImage
ImageGenResolutionFromLatent
ImageIntensityDetector
ImageLuminanceDetector
InpaintPreprocessor
LeReS-DepthMapPreprocessor
LineArtPreprocessor
LineartStandardPreprocessor
M-LSDPreprocessor
Manga2Anime_LineArt_Preprocessor
MaskOptFlow
MediaPipe-FaceMeshPreprocessor
MeshGraphormer+ImpactDetector-DepthMapPreprocessor
MeshGraphormer-DepthMapPreprocessor
Metric3D-DepthMapPreprocessor
Metric3D-NormalMapPreprocessor
Metric_DepthAnythingV2Preprocessor
MiDaS-DepthMapPreprocessor
MiDaS-NormalMapPreprocessor
OneFormer-ADE20K-SemSegPreprocessor
OneFormer-COCO-SemSegPreprocessor
OpenposePreprocessor
PiDiNetPreprocessor
PixelPerfectResolution
RenderAnimalKps
RenderPeopleKps
SAMPreprocessor
SavePoseKpsAsJsonFile
ScribblePreprocessor
Scribble_PiDiNet_Preprocessor
Scribble_XDoG_Preprocessor
SemSegPreprocessor
ShufflePreprocessor
TEEDPreprocessor
TTPlanet_TileGF_Preprocessor
TTPlanet_TileSimple_Preprocessor
TilePreprocessor
UniFormer-SemSegPreprocessor
Unimatch_OptFlowPreprocessor
UpperBodyTrackingFromPoseKps
Zoe-DepthMapPreprocessor
Zoe_DepthAnythingPreprocessor

ComfyDeploy: How ComfyUI's ControlNet Auxiliary Preprocessors works in ComfyUI?

What is ComfyUI's ControlNet Auxiliary Preprocessors?

Plug-and-play ComfyUI node sets for making ControlNet hint images.

Check out the examples!

How to install it in ComfyDeploy?

Head over to the machine page

  1. Click on the "Create a new machine" button
  2. Select the Edit build steps
  3. Add a new step -> Custom Node
  4. Search for ComfyUI's ControlNet Auxiliary Preprocessors and select it
  5. Close the build step dialig and then click on the "Save" button to rebuild the machine

ComfyUI's ControlNet Auxiliary Preprocessors

Plug-and-play ComfyUI node sets for making ControlNet hint images

"anime style, a protest in the street, cyberpunk city, a woman with pink hair and golden eyes (looking at the viewer) is holding a sign with the text "ComfyUI ControlNet Aux" in bold, neon pink" on Flux.1 Dev

The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to the 🤗 Hub.

All credit & copyright goes to https://github.com/lllyasviel.

Updates

Go to Update page to follow updates

Installation:

Using ComfyUI Manager (recommended):

Install ComfyUI Manager and do steps introduced there to install this repo.

Alternative:

If you're running on Linux, or non-admin account on windows you'll want to ensure /ComfyUI/custom_nodes and comfyui_controlnet_aux has write permissions.

There is now a install.bat you can run to install to portable if detected. Otherwise it will default to system and assume you followed ConfyUI's manual installation steps.

If you can't run install.bat (e.g. you are a Linux user). Open the CMD/Shell and do the following:

  • Navigate to your /ComfyUI/custom_nodes/ folder
  • Run git clone https://github.com/Fannovel16/comfyui_controlnet_aux/
  • Navigate to your comfyui_controlnet_aux folder
    • Portable/venv:
      • Run path/to/ComfUI/python_embeded/python.exe -s -m pip install -r requirements.txt
    • With system python
      • Run pip install -r requirements.txt
  • Start ComfyUI

Nodes

Please note that this repo only supports preprocessors making hint images (e.g. stickman, canny edge, etc). All preprocessors except Inpaint are intergrated into AIO Aux Preprocessor node. This node allow you to quickly get the preprocessor but a preprocessor's own threshold parameters won't be able to set. You need to use its node directly to set thresholds.

Nodes (sections are categories in Comfy menu)

Line Extractors

| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | Binary Lines | binary | control_scribble | | Canny Edge | canny | control_v11p_sd15_canny <br> control_canny <br> t2iadapter_canny | | HED Soft-Edge Lines | hed | control_v11p_sd15_softedge <br> control_hed | | Standard Lineart | standard_lineart | control_v11p_sd15_lineart | | Realistic Lineart | lineart (or lineart_coarse if coarse is enabled) | control_v11p_sd15_lineart | | Anime Lineart | lineart_anime | control_v11p_sd15s2_lineart_anime | | Manga Lineart | lineart_anime_denoise | control_v11p_sd15s2_lineart_anime | | M-LSD Lines | mlsd | control_v11p_sd15_mlsd <br> control_mlsd | | PiDiNet Soft-Edge Lines | pidinet | control_v11p_sd15_softedge <br> control_scribble | | Scribble Lines | scribble | control_v11p_sd15_scribble <br> control_scribble | | Scribble XDoG Lines | scribble_xdog | control_v11p_sd15_scribble <br> control_scribble | | Fake Scribble Lines | scribble_hed | control_v11p_sd15_scribble <br> control_scribble | | TEED Soft-Edge Lines | teed | controlnet-sd-xl-1.0-softedge-dexined <br> control_v11p_sd15_softedge (Theoretically) | Scribble PiDiNet Lines | scribble_pidinet | control_v11p_sd15_scribble <br> control_scribble | | AnyLine Lineart | | mistoLine_fp16.safetensors <br> mistoLine_rank256 <br> control_v11p_sd15s2_lineart_anime <br> control_v11p_sd15_lineart |

Normal and Depth Estimators

| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | MiDaS Depth Map | (normal) depth | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth | | LeReS Depth Map | depth_leres | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth | | Zoe Depth Map | depth_zoe | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth | | MiDaS Normal Map | normal_map | control_normal | | BAE Normal Map | normal_bae | control_v11p_sd15_normalbae | | MeshGraphormer Hand Refiner (HandRefinder) | depth_hand_refiner | control_sd15_inpaint_depth_hand_fp16 | | Depth Anything | depth_anything | Depth-Anything | | Zoe Depth Anything <br> (Basically Zoe but the encoder is replaced with DepthAnything) | depth_anything | Depth-Anything | | Normal DSINE | | control_normal/control_v11p_sd15_normalbae | | Metric3D Depth | | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth | | Metric3D Normal | | control_v11p_sd15_normalbae | | Depth Anything V2 | | Depth-Anything |

Faces and Poses Estimators

| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | DWPose Estimator | dw_openpose_full | control_v11p_sd15_openpose <br> control_openpose <br> t2iadapter_openpose | | OpenPose Estimator | openpose (detect_body) <br> openpose_hand (detect_body + detect_hand) <br> openpose_faceonly (detect_face) <br> openpose_full (detect_hand + detect_body + detect_face) | control_v11p_sd15_openpose <br> control_openpose <br> t2iadapter_openpose | | MediaPipe Face Mesh | mediapipe_face | controlnet_sd21_laion_face_v2 | | Animal Estimator | animal_openpose | control_sd15_animal_openpose_fp16 |

Optical Flow Estimators

| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | Unimatch Optical Flow | | DragNUWA |

How to get OpenPose-format JSON?

User-side

This workflow will save images to ComfyUI's output folder (the same location as output images). If you haven't found Save Pose Keypoints node, update this extension

Dev-side

An array of OpenPose-format JSON corresponsding to each frame in an IMAGE batch can be gotten from DWPose and OpenPose using app.nodeOutputs on the UI or /history API endpoint. JSON output from AnimalPose uses a kinda similar format to OpenPose JSON:

[
    {
        "version": "ap10k",
        "animals": [
            [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
            [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
            ...
        ],
        "canvas_height": 512,
        "canvas_width": 768
    },
    ...
]

For extension developers (e.g. Openpose editor):

const poseNodes = app.graph._nodes.filter(node => ["OpenposePreprocessor", "DWPreprocessor", "AnimalPosePreprocessor"].includes(node.type))
for (const poseNode of poseNodes) {
    const openposeResults = JSON.parse(app.nodeOutputs[poseNode.id].openpose_json[0])
    console.log(openposeResults) //An array containing Openpose JSON for each frame
}

For API users: Javascript

import fetch from "node-fetch" //Remember to add "type": "module" to "package.json"
async function main() {
    const promptId = '792c1905-ecfe-41f4-8114-83e6a4a09a9f' //Too lazy to POST /queue
    let history = await fetch(`http://127.0.0.1:8188/history/${promptId}`).then(re => re.json())
    history = history[promptId]
    const nodeOutputs = Object.values(history.outputs).filter(output => output.openpose_json)
    for (const nodeOutput of nodeOutputs) {
        const openposeResults = JSON.parse(nodeOutput.openpose_json[0])
        console.log(openposeResults) //An array containing Openpose JSON for each frame
    }
}
main()

Python

import json, urllib.request

server_address = "127.0.0.1:8188"
prompt_id = '' #Too lazy to POST /queue

def get_history(prompt_id):
    with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
        return json.loads(response.read())

history = get_history(prompt_id)[prompt_id]
for o in history['outputs']:
    for node_id in history['outputs']:
        node_output = history['outputs'][node_id]
        if 'openpose_json' in node_output:
            print(json.loads(node_output['openpose_json'][0])) #An list containing Openpose JSON for each frame

Semantic Segmentation

| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | OneFormer ADE20K Segmentor | oneformer_ade20k | control_v11p_sd15_seg | | OneFormer COCO Segmentor | oneformer_coco | control_v11p_sd15_seg | | UniFormer Segmentor | segmentation |control_sd15_seg <br> control_v11p_sd15_seg|

T2IAdapter-only

| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | Color Pallete | color | t2iadapter_color | | Content Shuffle | shuffle | t2iadapter_style |

Recolor

| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | |-----------------------------|---------------------------|-------------------------------------------| | Image Luminance | recolor_luminance | ioclab_sd15_recolor <br> sai_xl_recolor_256lora <br> bdsqlsz_controlllite_xl_recolor_luminance | | Image Intensity | recolor_intensity | Idk. Maybe same as above? |

Examples

A picture is worth a thousand words

Testing workflow

https://github.com/Fannovel16/comfyui_controlnet_aux/blob/main/examples/ExecuteAll.png Input image: https://github.com/Fannovel16/comfyui_controlnet_aux/blob/main/examples/comfyui-controlnet-aux-logo.png

Q&A:

Why some nodes doesn't appear after I installed this repo?

This repo has a new mechanism which will skip any custom node can't be imported. If you meet this case, please create a issue on Issues tab with the log from the command line.

DWPose/AnimalPose only uses CPU so it's so slow. How can I make it use GPU?

There are two ways to speed-up DWPose: using TorchScript checkpoints (.torchscript.pt) checkpoints or ONNXRuntime (.onnx). TorchScript way is little bit slower than ONNXRuntime but doesn't require any additional library and still way way faster than CPU.

A torchscript bbox detector is compatiable with an onnx pose estimator and vice versa.

TorchScript

Set bbox_detector and pose_estimator according to this picture. You can try other bbox detector endings with .torchscript.pt to reduce bbox detection time if input images are ideal.

ONNXRuntime

If onnxruntime is installed successfully and the checkpoint used endings with .onnx, it will replace default cv2 backend to take advantage of GPU. Note that if you are using NVidia card, this method currently can only works on CUDA 11.8 (ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z) unless you compile onnxruntime yourself.

  1. Know your onnxruntime build:
    • NVidia CUDA 11.x or bellow/AMD GPU: onnxruntime-gpu
    • NVidia CUDA 12.x: onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
    • DirectML: onnxruntime-directml
    • OpenVINO: onnxruntime-openvino

Note that if this is your first time using ComfyUI, please test if it can run on your device before doing next steps.

  1. Add it into requirements.txt

  2. Run install.bat or pip command mentioned in Installation

Assets files of preprocessors

1500 Stars 😄

<a href="https://star-history.com/#Fannovel16/comfyui_controlnet_aux&Date"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date&theme=dark" /> <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date" /> <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date" /> </picture> </a>

Thanks for yalls supports. I never thought the graph for stars would be linear lol.